Modulation of translation initiation efficiency in classical swine fever virus.
نویسندگان
چکیده
Modulation of translation initiation efficiency on classical swine fever virus (CSFV) RNA can be achieved by targeted mutations within the internal ribosome entry site (IRES). In this study, cDNAs corresponding to the wild-type (wt) or mutant forms of the IRES of CSFV strain Paderborn were amplified and inserted into dicistronic reporter plasmids encoding Fluc and Rluc under the control of a T7 promoter. The mutations were within domains II, IIId(1), and IIIf of the IRES. The plasmids were transfected into baby hamster kidney (BHK) cells infected with recombinant vaccinia virus vTF7-3, which expresses the T7 RNA polymerase. IRES mutants with different levels of IRES activity were identified and then introduced by homologous recombination into bacterial artificial chromosomes (BACs) containing CSFV Paderborn cDNA downstream of a T7 promoter. From the wt and mutant BACs, full-length CSFV RNA transcripts were produced in vitro and electroporated into porcine PK15 cells. Rescued mutant viruses were obtained from RNAs that contained mutations within domain IIIf which retained more than 75% of the wt translation efficiency. Sequencing of cDNA generated from these rescued viruses verified the maintenance of the introduced changes within the IRES. The growth characteristics of each rescued mutant virus were compared to those of the wt virus. It was shown that viable mutant viruses with reduced translation initiation efficiency can be designed and generated and that viruses containing mutations within domain IIIf of the IRES have reduced growth in cell culture compared to the wt virus.
منابع مشابه
A prokaryotic-like mode of cytoplasmic eukaryotic ribosome binding to the initiation codon during internal translation initiation of hepatitis C and classical swine fever virus RNAs.
Initiation of translation of hepatitis C virus and classical swine fever virus mRNAs results from internal ribosomal entry. We reconstituted internal ribosomal entry in vitro from purified translation components and monitored assembly of 48S ribosomal preinitiation complexes by toe-printing. Ribosomal subunits (40S) formed stable binary complexes on both mRNAs. The complex structure of these RN...
متن کاملSpecific interaction of eukaryotic translation initiation factor 3 with the 5' nontranslated regions of hepatitis C virus and classical swine fever virus RNAs.
Translation of hepatitis C virus (HCV) and classical swine fever virus (CSFV) RNAs is initiated by cap-independent attachment (internal entry) of ribosomes to the approximately 350-nucleotide internal ribosomal entry segment (IRES) at the 5' end of both RNAs. Eukaryotic initiation factor 3 (eIF3) binds specifically to HCV and CSFV IRESs and plays an essential role in the initiation process on t...
متن کاملThe 3′-Terminal Hexamer Sequence of Classical swine fever virus RNA Plays a Role in Negatively Regulating the IRES-Mediated Translation
The 3' untranslated region (UTR) is usually involved in the switch of the translation and replication for a positive-sense RNA virus. To understand the 3' UTR involved in an internal ribosome entry site (IRES)-mediated translation in Classical swine fever virus (CSFV), we first confirmed the predicted secondary structure (designated as SLI, SLII, SLIII, and SLIV) by enzymatic probing. Using a r...
متن کاملeIF2-dependent and eIF2-independent modes of initiation on the CSFV IRES: a common role of domain II.
Specific interactions of the classical swine fever virus internal ribosomal entry site (IRES) with 40S ribosomal subunits and eukaryotic translation initiation factor (eIF)3 enable 43S preinitiation complexes containing eIF3 and eIF2-GTP-Met-tRNA(iMet) to bind directly to the initiation codon, yielding 48S initiation complexes. We report that eIF5B or eIF5B/eIF3 also promote Met-tRNA(iMet) bind...
متن کاملThe influence of viral coding sequences on pestivirus IRES activity reveals further parallels with translation initiation in prokaryotes.
Classical swine fever virus (CSFV) is a member of the pestivirus family, which shares many features in common with hepatitis C virus (HCV). It is shown here that CSFV has an exceptionally efficient cis-acting internal ribosome entry segment (IRES), which, like that of HCV, is strongly influenced by the sequences immediately downstream of the initiation codon, and is optimal with viral coding se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of virology
دوره 86 16 شماره
صفحات -
تاریخ انتشار 2012